Meine Forschungsarbeit konzentriert sich auf die Anwendung von Künstlicher Intelligenz im Bankwesen. Durch die Untersuchung von state-of-the-art Machine Learning Algorithmen und wie sie im Finanzsektor eingesetzt werden können, arbeite ich daran, den Nutzen von fortschrittlichen Technologien in diesem wichtigen Wirtschaftsbereich zu verstehen und zu fördern.
Die nachfolgenden Publikationen repräsentieren eine Auswahl meiner Forschungsergebnisse.
Published in: International Journal of Information Technology & Decision Making (2023). DOI:10.1142/S0219622023500694.
With Company2Vec, the paper proposes a novel application in representation learning. The model analyzes business activities from unstructured company website data using Word2Vec and dimensionality reduction. Company2Vec maintains semantic language structures and thus creates efficient company embeddings in fine-granular industries. These semantic embeddings can be used for various applications in banking.
Direct relations between companies and words allow semantic business analytics (e.g., top-n words for a company). Furthermore, industry prediction is presented as a supervised learning application and evaluation method. The vectorized structure of the embeddings allows measuring companies’ similarities with the cosine distance. Company2Vec hence offers a more fine-grained comparison of companies than the standard industry labels (NACE). This property is relevant for unsupervised learning tasks, such as clustering. An alternative industry segmentation is shown with k-means clustering on the company embeddings. Finally, this paper proposes three algorithms for (1) firm-centric, (2) industry-centric and (3) portfolio-centric peer-firm identification.
doi.org/10.48550/arXiv.2411.14463
This paper explores the growing impact of AI and NLP in bank marketing, highlighting their evolving roles in enhancing marketing strategies, improving customer engagement, and creating value within this sector. While AI and NLP have been widely studied in general marketing, there is a notable gap in understanding their specific applications and potential within the banking sector. This research addresses this specific gap by providing a systematic review and strategic analysis of AI and NLP applications in bank marketing, focusing on their integration across the customer journey and operational excellence. Employing the PRISMA methodology, this study systematically reviews existing literature to assess the current landscape of AI and NLP in bank marketing. Additionally, it incorporates semantic mapping using Sentence Transformers and UMAP for strategic gap analysis to identify underexplored areas and opportunities for future research.
The systematic review reveals limited research specifically focused on NLP applications in bank marketing. The strategic gap analysis identifies key areas where NLP can further enhance marketing strategies, including customer-centric applications like acquisition, retention, and personalized engagement, offering valuable insights for both academic research and practical implementation. This research contributes to the field of bank marketing by mapping the current state of AI and NLP applications and identifying strategic gaps. The findings provide actionable insights for developing NLP-driven growth and innovation frameworks and highlight the role of NLP in improving operational efficiency and regulatory compliance. This work has broader implications for enhancing customer experience, profitability, and innovation in the banking industry.
Published in: Information Fusion (2025). doi.org/10.1016/j.inffus.2025.102973
Als Data Scientist und Forscher vereine ich die Erkenntnisse aus der akademischen Welt mit praxisnahen Anwendungen im Bankwesen. Mein Forschungsschwerpunkt auf unstrukturierten Daten, NLP und speziellen neuronalen Netzen fließt direkt in meine Arbeit im Bereich Sales Analytics ein. Diese Kombination ermöglicht mir, innovative Lösungen für das Firmenkundengeschäft zu entwickeln und Theorie in die Praxis umzusetzen, um realen Geschäftsanforderungen gerecht zu werden.